Introduction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Basics of the NLTE physics

Jiří Kubát

Astronomical Institute Ondřejov

11 April 2013

Stellar atmosphere problem

Equilibrium distributions

Microscopic processes

Equations of statistical equilibrium

Summary

◆□ > ◆□ > ◆三 > ◆三 > ○ ● ●

Analysis of observed spectra

assume you have observed and reduced spectrum (using some spectrograph, telescope and some reduction software, e.g. IRAF)

steps of analysis

- 1. calculation of model atmosphere (ATLAS9, TLUSTY)
 - solution of structural equations
- 2. calculation of synthetic spectrum (SYNTHE, SYNSPEC)
 - solution of the radiative transfer equation for given model
- 3. comparison with observations (printing, screen, SME)
 - using the synthetic spectra for comparison

Analysis of observed spectra

assume you have observed and reduced spectrum (using some spectrograph, telescope and some reduction software, e.g. IRAF)

steps of analysis

- 1. calculation of model atmosphere (ATLAS9, TLUSTY)
 - solution of structural equations
 - fully LTE / NLTE dependent
- 2. calculation of synthetic spectrum (SYNTHE, SYNSPEC)
 - solution of the radiative transfer equation for given model
 - partially LTE / NLTE dependent
- 3. comparison with observations (printing, screen, SME)
 - using the synthetic spectra for comparison
 - LTE / NLTE independent

(ロ) (同) (三) (三) (三) (○) (○)

Stellar atmosphere problem

solution of the stellar atmosphere problem – searching for distributions:

- momentum distribution (velocities of all particles)
- distribution of particle internal degrees of freedom (populations of atomic excitation stages)
- distribution of internal degrees of freedom of the electromagnetic field (radiation field for all frequencies, directions, polarization)

Thermodynamic equilibrium

conditions for equilibrium

- $t_{\rm relaxation} \ll t_{\rm macroscopic changes}$
- $I_{\rm macroscopic\ changes} \ll \overline{I}_{\rm free\ path}$
- $t_{
 m relaxation} \ll t_{
 m inelastic collisions}$
- if $t_{\rm relaxation}\gtrsim t_{\rm inelastic \ collisions}\Rightarrow$ colliding particles have to be in equilibrium

Thermodynamic equilibrium

distributions in equilibrium

- electron (and other particle) velocities
 - Maxwellian distribution

$$f(\boldsymbol{v})\,\mathrm{d}\boldsymbol{v} = \frac{1}{v_0\sqrt{\pi}}\boldsymbol{e}^{-\frac{\boldsymbol{v}^2}{v_0^2}}\,\mathrm{d}\boldsymbol{v}$$

most probable speed:
$$v_0 = \sqrt{\frac{2kT}{m_e}}$$

Thermodynamic equilibrium

distributions in equilibrium

- atomic level populations
 - Boltzmann distribution

$$\frac{n_i^*}{n_0^*} = \frac{g_i}{g_0} e^{-\frac{\chi_i}{kT}}$$

- ionization degrees distribution
 - Saha equation

$$\frac{N_j^*}{N_{j+1}^*} = n_e \frac{U_j(T)}{2U_{j+1}(T)} \left(\frac{h^2}{2\pi m_e kT}\right)^{\frac{3}{2}} e^{\frac{\chi_{ij}}{kT}}$$

・ロト・西ト・ヨト ・ヨー シック

ESE

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Summary

Thermodynamic equilibrium

distributions in equilibrium

• radiation field – Planck distribution

$$B_{
u}(T) = rac{2h
u^3}{c^2}rac{1}{e^{rac{h
u}{kT}}-1}$$

Thermodynamic equilibrium

distributions in equilibrium

- electron velocities Maxwellian distribution
- level populations Saha-Boltzmann distribution
- radiation field

Planck distribution

Thermodynamic equilibrium

distributions in equilibrium

electron velocities – Maxwellian distribution level populations – Saha-Boltzmann distribution radiation field – Planck distribution contradicts observations

Thermodynamic equilibrium

distributions in equilibrium

electron velocities – Maxwellian distribution level populations – Saha-Boltzmann distribution radiation field – Planck distribution contradicts observations

Thermodynamic equilibrium

distributions in equilibrium

electron velocities	_	Maxwellian distribution
level populations	_	Saha-Boltzmann distribution
radiation field	_	Planck distribution
		contradicts observations

not suitable approximation for stellar atmospheres

Local thermodynamic equilibrium

locally equilibrium distributions

(we ignore the dependence $T(\vec{r})$, $N(\vec{r})$) electron velocities – Maxwellian distribution level populations – Saha-Boltzmann distribution

Local thermodynamic equilibrium

locally equilibrium distributions

(we ignore the dependence $T(\vec{r})$, $N(\vec{r})$) electron velocities – Maxwellian distribution level populations – Saha-Boltzmann distribution

non-equilibrium distribution

radiation field - calculated by RTE solution

$$\mu \frac{\mathsf{d} I_{\mu\nu}}{\mathsf{d} z} = \eta_{\nu} - \chi_{\nu} I_{\mu\nu}$$

with the source function equal to the Planck function

$$S_{
u} = rac{\eta_{
u}}{\chi_{
u}} = B_{
u}$$

・ロト・西ト・西ト・西ト・日・ つんぐ

Local thermodynamic equilibrium

locally equilibrium distributions

(we ignore the dependence $T(\vec{r})$, $N(\vec{r})$) electron velocities – Maxwellian distribution level populations – Saha-Boltzmann distribution ???

non-equilibrium distribution

radiation field - calculated by RTE solution

$$\mu \frac{\mathsf{d} I_{\mu\nu}}{\mathsf{d} z} = \eta_{\nu} - \chi_{\nu} I_{\mu\nu}$$

with the source function equal to the Planck function

$$S_{
u} = rac{\eta_{
u}}{\chi_{
u}} = B_{
u}$$

Statistical equilibrium (NLTE or non-LTE)

locally equilibrium distribution

electron velocities - Maxwellian distribution

non-equilibrium distributions

level populations – statistical equilibrium radiation field – calculated by RTE solution

$$\mu \frac{\mathsf{d} I_{\mu\nu}}{\mathsf{d} z} = \eta_{\nu} - \chi_{\nu} I_{\mu\nu}$$

 η_{ν} and χ_{ν} determined using level populations

Microscopic processes

particle collisions

- elastic collisions (e-e, e-H, e-H⁺, e-He, H-H, H-He, ...) maintain equuilibrium velocity distribution
- inelastic collisions with electrons
 - excitation: $e(v) + X \rightarrow e(v' < v) + X^*$
 - deexcitation: $e(v) + X^* \rightarrow e(v' > v) + X$
 - ionization: $\mathrm{e} + \mathrm{X} \rightarrow 2\mathrm{e} + \mathrm{X}^+$
 - recombination: 2e $+ \, \mathrm{X}^+ \rightarrow \mathrm{e} + \mathrm{X}$
- inelastic collisions with other particles less frequent
 ⇒ usually neglected

Microscopic processes

interaction with radiation

- excitation: $\nu + X \rightarrow X^*$
- deexcitation:
 - spontaneous: $X^* \rightarrow \nu + X$
 - stimulated: $\nu + X^* \rightarrow 2\nu + X$
- ionization: $\nu + X \rightarrow X^+ + e$

- recombination:
 - spontaneous: $e + X^+ \rightarrow \nu + X$
 - stimulated: $\nu + e + X^+ \rightarrow 2\nu + X$

Microscopic processes

interaction with radiation

- excitation: $\nu + X \rightarrow X^*$
- deexcitation:
 - spontaneous: $X^* \rightarrow \nu + X$
 - stimulated: $\nu + X^* \rightarrow 2\nu + X$
- ionization: $\nu + X \rightarrow X^+ + e$
 - autoionization: $\nu + X \rightarrow X^{**} \rightarrow X^+ + e$
 - Auger ionization: $\nu + X \rightarrow X^{+*}$
- recombination:
 - spontaneous: $e + X^+ \rightarrow \nu + X$
 - stimulated: $\nu + e + X^+ \rightarrow 2\nu + X$
 - dielectronic recombination: ${\rm X}^+ + {\rm e} \rightarrow {\rm X}^{**} \rightarrow \nu + {\rm X}$

Microscopic processes

scattering

- free-free transitions $\nu + e + X \leftrightarrow e + X$
- electron scattering
 - free (Compton, Thomson): $\nu + e \rightarrow \nu + e$
 - bound (Rayleigh): $\nu + X \rightarrow \nu + X$
 - bound with frequency change (Raman): $\nu + X \rightarrow \nu' + X$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

LTE and NLTE

maxwellian velocity distribution - silent background

- inelastic collisions (collisional ionizations and excitations) destroy equilibrium velocity distribution
- · equilibrium is maintained by elastic collisions
- $t_{
 m relaxation} \ll t_{
 m inelastic \ collisions}$ for most situations
- exceptions: medium with few electrons

(ロ) (同) (三) (三) (三) (○) (○)

LTE and NLTE

maxwellian velocity distribution - silent background

- inelastic collisions (collisional ionizations and excitations) destroy equilibrium velocity distribution
- · equilibrium is maintained by elastic collisions
- $t_{\rm relaxation} \ll t_{\rm inelastic \ collisions}$ for most situations
- exceptions: medium with few electrons

in the following we assume maxwellian (i.e. equilibrium) velocity distribution for all particles

radiation field is not in equilibrium – determined via the solution of the radiative transfer equation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

LTE versus NLTE

maxwellian velocity distribution

elastic collisions (E)

Saha-Boltzmann equilibrium

- processes entering the game
 - collisional excitation and ionization (E)
 - collisional deexcitation and recombination (E)
 - radiative recombination (E)
 - free-free transitions (E)
 - photoionization
 - radiative excitation and deexcitation
 - Auger ionization
 - autoionization
 - dielectronic recombination (E)

LTE versus NLTE

LTE detailed balance

- rate of each process is balanced by rate of the reverse process
- maxwellian distribution of electrons ⇒ collisional processes in detailed balance
- radiative transitions in detailed balance only for Planck radiation field
- if J_ν ≠ B_ν (as in stellar atmospheres)
 ⇒ LTE not acceptable approximation, we can not reach detailed balance in radiative transitions

(ロ) (同) (三) (三) (三) (○) (○)

Equations of statistical equilibrium

change of the state *i* of each element

$$\frac{\partial n_i}{\partial t} + \nabla \cdot (n_i \vec{v}) = \sum_{j \neq i} (n_j P_{ji} - n_i P_{ij})$$

Equations of statistical equilibrium

change of the state *i* of each element

$$\frac{\partial n_i}{\partial t} + \nabla \cdot (n_i \vec{v}) = \sum_{j \neq i} \left(n_j P_{ji} - n_i P_{ij} \right)$$

 P_{ij} – transition probability from the level *i* to the level *j*

Summing over all levels \rightarrow continuity equation for element *k*,

$$\frac{\partial N_k}{\partial t} + \nabla \cdot (N_k \vec{v}) = 0.$$

gas continuity equation ($\rho = N_k m_k$)

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{\mathbf{v}}) = \mathbf{0}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Equations of statistical equilibrium

change of the state *i* of each element

$$\frac{\partial p_i}{\partial t} + \nabla \cdot (n_i \vec{v}) = \sum_{j \neq i} (n_j P_{ji} - n_i P_{ij})$$

 P_{ij} – transition probability from the level *i* to the level *j*

• stationary state or negligible changes with time – without $\partial/\partial t$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Equations of statistical equilibrium

change of the state *i* of each element

$$\frac{\partial p_i}{\partial t} + \sum (n_i \vec{v}) = \sum_{j \neq i} (n_j P_{ji} - n_i P_{ij})$$

- stationary state or negligible changes with time without $\partial/\partial t$
- static state ($\vec{v} = 0$) or negligible advection also without ∇

Equations of statistical equilibrium

change of the state *i* of each element

$$0 = \sum_{j \neq i} \left(n_j P_{ji} - n_i P_{ij} \right)$$

- stationary state or negligible changes with time without $\partial/\partial t$
- static state ($\vec{v} = 0$) or negligible advection also without ∇

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Equations of statistical equilibrium

change of the state *i* of each element

$$0 = \sum_{j \neq i} \left(n_j P_{ji} - n_i P_{ij} \right)$$

- $P_{ij} = R_{ij} + C_{ij}$
- R_{ij} radiative rates (depend on J_{ν})
- C_{ij} collisional rates (depend on T, n_e)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Equations of statistical equilibrium

change of the state *i* of each element

$$0 = \sum_{j \neq i} \left(n_j P_{ji} - n_i P_{ij} \right)$$

- detailed balance is for $n_j P_{ji} = n_i P_{ij}$, for $\forall i, j$
- equilibrium populations n_i^* ,

Equilibrium level populations

- n_i^* LTE level population
- departure coefficients $b_i = \frac{n_i}{n_i^*}$, for LTE $b_i = 1$

two definitions of $n_{i,i}^*$ (level *i* of ion *j*)

1. population with the assumption of LTE

2.

$$n_{i,j}^{*} = n_{0,j+1} n_{e} \frac{g_{ij}}{g_{0,j+1}} \frac{1}{2} \left(\frac{h^{2}}{2\pi m kT}\right)^{\frac{3}{2}} e^{-\frac{\chi_{ij} - \chi_{ij}}{kT}}$$

 $n_{0,j+1} - \underline{actual}$ population of the ground level of the next higher ion

 $b_{i,j}$ describes actual departure from LTE for given level *i*

first choice – seems more natural; second choice – more descriptive

System of statistical equilibrium equations

∀ level i

$$n_i \sum_{l} (R_{il} + C_{il}) + \sum_{l} n_l (R_{li} + C_{li}) = 0$$

linearly dependent equations

supplementary equations

- charge conservation Σ_k Σ_j q_jN_{jk} = n_e example: pure hydrogen n_{H II} = n_e
- particle number conservation ∑_k∑_j N_{jk} = N_N example: pure hydrogen n_{H I} + n_{H II} = N_N N_N − total number density of all neutral atoms and ions
- abundance equation $\sum_{j} N_{jk} = \frac{\alpha_k}{\alpha_H} \sum_{j} N_{jH}$

System of statistical equilibrium equations

System of equations

$$n_{i} \sum_{l} (R_{il} + C_{il}) + \sum_{l} n_{l} (R_{li} + C_{li}) = 0$$
$$\sum_{k} \sum_{j} q_{j} N_{jk} = n_{e} \sum_{k} \sum_{j} N_{jk} = N_{N} \sum_{j} N_{jk} = \frac{\alpha_{k}}{\alpha_{H}} \sum_{j} N_{jH}$$

can be formally written

$$\mathcal{A} \cdot \vec{n} = \mathcal{B}$$

- matrix *A* contains all rates rate matrix
- vector B is 0 except rows with conservation laws
- $\vec{n} = (n_1, \dots, n_{NL})$ vector of all populations

Solution of the system of ESE

$$A \cdot \vec{n} = B$$

for given $\mathcal A$ and $\mathcal B$ set of linear equations

 $\mathcal{A}(I_{\mu\nu}) \quad \Rightarrow \quad \text{add solution of the radiative transfer equation}$

$$\mu \frac{\mathsf{d} I_{\mu\nu}}{\mathsf{d} z} = \eta_{\nu} - \chi_{\nu} I_{\mu\nu}$$

 $\eta_{\nu}(\vec{n}), \chi_{\nu}(\vec{n}) \quad \Rightarrow \quad \text{systems mutually coupled}$

- nonlinear system of equations
- "natural" iteration scheme: n→ J_ν → n→ J_ν → ... does not converge (Λ-iteration, J_ν = ∧S_ν)
- necessary to solve both systems of equations at once

Introduction

Micro

ESE

Solution of the system of ESE

- nonlinear system of equations
- "natural" iteration scheme: n→ J_ν → n→ J_ν → ... does not converge (Λ-iteration, J_ν = ∧S_ν)

methods of solution

- · Newton-Raphson method linearization of
 - all equations of statistical equilibrium
 - radiation transfer equation for all frequency points
- accelerated Λ-iteration (ALI)
 - similar scheme to Λ-iteration
 - uses approximate Λ-operator (ALO)
 - approximate solution of radiative transfer used in equations of statistical equilibrium

Summary

- NLTE (non-LTE) means
 - radiation is not in TE determined from radiative transfer equation
 - exictation and ionization is not in TE determined from equations of statistical equilibrium

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- particles are in LTE Maxwellian distribution
- equations of
 - radiation transfer
 - statistical equilibrium

solved simultanously