3D NLTE modeling of stellar spectra

Maria Bergemann

Modeling spectra of cool stars

- time dependence
- Hydrodynamics
- Magnetic fields
- Chromospheres
- Dynamics: inflows and outflows, mass loss
- Non-local thermodynamic equilibrium
- Non-equilibrium chemistry

Observations

G-band solar image Swedish Solar Telescope (La Palma)

Bergemann et al. 2013 in prep.

Surface granulation

© Remo Collet

T structure in the 3D convection simulation

© Remo Collet

Models

Nordlund et al. (2009)

velocity and temperature structure of a granule in a numerical simulation of the solar convection

Radiative-hydrodynamics in 3D but Simplified radiative transfer with LTE

$$\begin{array}{lll} \frac{\partial \ln \rho}{\partial t} &=& -\mathbf{u} \cdot \nabla \ln \rho - \nabla \cdot \mathbf{u} \ ,\\ \frac{\partial \mathbf{u}}{\partial t} &=& -\mathbf{u} \cdot \nabla \mathbf{u} + \mathbf{g} - \frac{P}{\rho} \nabla \ln P + \underline{\tau} \ ,\\ \frac{\partial e}{\partial t} &=& -\mathbf{u} \cdot \nabla e - \frac{P}{\rho} \nabla \cdot \mathbf{u} \\ &+ Q_{rad} + Q_{visc} \ , \end{array}$$

Steffen & Holweger 2002

Full 3D NLTE radiative transfer

computationally prohibitive

→ applied only to ~10 stars so far and only simplest atoms (Li and Oxygen)

Full 3D NLTE radiative transfer

Li: consistent 3D NLTE radiative transfer

Lind et al. 2013

3D in Hydrogen line profiles

		$3D - 1D_{LHD}$					
		$\alpha_{\rm MLT} = 0.5$		$\alpha_{\rm MLT} = 1.0$		$\alpha_{\rm MLT} = 2.0$	
$T_{\rm eff}/\log g/[{ m M/H}]$	line	ΔT	QF/σ	ΔT	QF/σ	ΔT	QF/σ
(K/c.g.s/dex)							
5500/3.50/-2.00	H_{α}	235	89/26	119	99/19	-76	80/16
	H_{β}	20	35/11	-94	48/10	-251	54/10
	Η _γ	-10	31/10	-144	44/8	-309	51/9
5780/4.40/0.00	H_{α}	34	21/9	24	16/8	-21	44/10
	H_{β}	39	15/9	-23	52/9	-164	72/9
	Hγ	36	19/9	-64	41/7	-263	76/9
	/						

Ludwig et al. 2009

3D on Hydrogen line profiles

Ludwig et al. 2009

Full 3D NLTE radiative transfer

computationally prohibitive

→ applied only to ~10 stars so far and only simplest atoms (Li and Oxygen)

→But we need an approach, which works for other (complex) elements, e.g. Fe

Reducing complexity

• non-LTE radiative transfer

'trace element assumption' – single element treated at a time

no effect on the structure of a model atmosphere

Reducing complexity

3D RHD simulations of stellar convection

 \rightarrow temporal and spatial averaging

1D-averages of 3D radiation-hydrodynamic models of stellar convection

Maria Bergemann, Max-Planck Institute Garching

Fe lines

- LTE: discrepancy between Fe I and Fe II lines
- 1D NLTE: discrepancy between Fe I lines
- <3D> NLTE OK

Bergemann et al. 2012

Fe: 1D NLTE and <3D> NLTE

Why are NLTE effects different in 1D and <3D>?

<3D> NLTE stellar parameters

<3D> LTE:

- over-estimated T_{eff}
- under-estimated log g

Bergemann et al. 2012

T_{eff}, log g, [Fe/H] from stellar spectra

+ evolutionary tracks

Visual binary: F-type sub-giant + white dwarf T_{eff} from interferometry

LTE over-estimates distance, especially with <3D> models

1D models are OK, if NLTE is taken into account

Red supergiants

Abundance diagnostics in the near-IR

Conclusions

- FGKM stars: photospheres are non-equilibrium systems
- sub-photospheric convection affects emergent radiation
- classical 1D LTE approach in the determination of basic stellar parameters is **not valid**:

systematic effect on Teff, log g, [Fe/H], abundances