Solar abundance problem

Maria Bergemann

Solar abundances

Solar Chemical Composition (SCC) is a fundamental reference in astrophysics

History

Seminal papers by Grevesse & Noels (1993), Grevesse & Sauval (1998)

- 1D hydrostatic solar models
- LTE

Compilation of atomic data from different literature sources

New 3D NLTE solar abundances

Asplund, Grevesse, Sauval, Scott, 2009, ARAA

3D hydrodynamical solar model atmosphere + NLTE, where available

New 3D NLTE solar abundances

Asplund, Grevesse, Sauval, Scott, 2009, ARAA

3D hydrodynamical solar model atmosphere + NLTE, where available

	$\log \epsilon_{C,N,O}$	$\log \epsilon_{C,N,O}$	$\log \epsilon_{C,N,O}$	$log \epsilon_{C,N,O}$
Lines	3D	(3D)	HM	MARCS
[CI]	8.41	8.40	8.41	8.38
Сі	$8.42~\pm~0.05$	$8.47~\pm~0.04$	$8.45~\pm~0.04$	8.39 ± 0.04
$CH \Delta v = 1$	8.44 ± 0.04	8.44 ± 0.04	8.53 ± 0.04	8.44 ± 0.04
CH A-X	8.43 ± 0.03	$8.42~\pm~0.03$	8.51 ± 0.03	8.40 ± 0.03
C ₂ Swan	8.46 ± 0.03	8.46 ± 0.03	8.51 ± 0.03	8.46 ± 0.03
Nı	7.78 ± 0.04	7.89 ± 0.04	7.88 ± 0.04	7.78 ± 0.04
$NH \Delta v = 0$	$7.83~\pm~0.03$	7.94 ± 0.02	$8.02~\pm~0.02$	$7.97~\pm~0.02$
$NH \Delta v = 1$	7.88 ± 0.03	7.91 ± 0.03	$8.01~\pm~0.03$	7.91 ± 0.03
[OI]	8.70 ± 0.05	8.70 ± 0.05	$8.73~\pm~0.05$	8.69 ± 0.05
Ог	8.69 ± 0.05	$8.73~\pm~0.05$	8.69 ± 0.05	$8.62~\pm~0.05$
$OH \Delta v = 0$	8.69 ± 0.03	8.75 ± 0.03	$8.83~\pm~0.03$	8.78 ± 0.03
$OH \Delta v = 1$	8.69 ± 0.03	8.74 ± 0.03	8.86 ± 0.03	$8.75~\pm~0.03$

New 3D NLTE solar abundances

Asplund, Grevesse, Sauval, Scott, 2009, ARAA

3D hydrodynamical solar model atmosphere + NLTE, where available

		$log \epsilon_{C,N,O}$	$log \epsilon_{C,N,O}$		$log \epsilon_{C,N,O}$	$log \epsilon_{C,N,O}$
	Lines	3D		⟨3D⟩	HM	MARCS
		0.41	0.40		8.41	8.38
Different lir	nes of the s	same eleme	nt	± 0.04	$8.45~\pm~0.04$	8.39 ± 0.04
givo smallo	r disporsio	n of		± 0.04	8.53 ± 0.04	8.44 ± 0.04
give smalle	i uispersio			± 0.03	8.51 ± 0.03	8.40 ± 0.03
abundance	s when fitte	± 0.03	8.51 ± 0.03	8.46 ± 0.03		
models			± 0.04	7.88 ± 0.04	7.78 ± 0.04	
models				± 0.02	$8.02~\pm~0.02$	7.97 ± 0.02
	$NH \Delta v = 1$	7.88 ± 0.03	7.91 ± 0.03		$8.01~\pm~0.03$	$7.91~\pm~0.03$
	[OI]	8.70 ± 0.05	$\frac{8.70 \pm 0.05}{8.73 \pm 0.05}$		$8.73~\pm~0.05$	8.69 ± 0.05
	Ог	8.69 ± 0.05			8.69 ± 0.05	8.62 ± 0.05
$OH \Delta v = 0 \qquad 8.69 \pm 0.03$			8.75 ± 0.03		$8.83~\pm~0.03$	8.78 ± 0.03
	$OH \Delta v = 1$	8.69 ± 0.03	8.74 ± 0.03		8.86 ± 0.03	$8.75~\pm~0.03$

New 3D NLTE solar abundances

Meteoritic abundances

CI Chondrites

 Mass spectroscopy very accurate!

✓ But volatile elements (form gaseous components) are depleted
 H, He, C, N, O and Ne

need a conversion factor from the solar to meteoritic scale

Meteoritic abundances

• CI Chondrites

depleted in $H \rightarrow$ coupling meteoritic abundances to astronomical scale using Si

A(el) = const + log N(el)

assuming A(Si) = 7.54 const = 1.54 to match Si abundance on both scales

Meteoritic vs old 1D LTE solar

Grevesse & Noels (1993), Grevesse & Sauval (1998)

Maria Bergemann, Max-Planck Institute Garching

Meteoritic vs new 3D NLTE solar

Grevesse & Sauval (1989)

• 1D hydrostatic solar model

old 1D LTE

• LTE

Element	GS98	AGSS09
С	8.52	8.43
Ν	7.92	7.83
0	8.83	8.69
Ne	8.08	7.93
Mg	7.58	7.53
\mathbf{Si}	7.56	7.51
Ar	6.40	6.40
Fe	7.50	7.45
Z/X	0.0229	0.0178

Asplund, Grevesse, Sauval, Scott, 2009, ARAA

- 3D hydrodynamical solar model
- NLTE, where available

new 3D NLTE

Significantly lower solar **metal mass fraction Z**

- **Z=0.0169** (GS 1998)
- Z=0.0134 (AGSS 2009)

The solar abundance problem

major difficulty to reconcile them with stellar evolution

Wrong sound speed Wrong depth of the convective zone Wrong surface He abundance

		CS98	AGSS09	Helios
	$(\mathbf{Z} \mathbf{Y})$	0.0220	0.0178	1101105.
zon د	$\left(\frac{Z/\Lambda_{\odot}}{D}\right)$	0.0229	0.0178	0.719 0.001
201	$R_{\rm CZ}/R_{\odot}$	0.712	0.723	0.713 ± 0.001
	$Y_{ m S}$	0.2429	0.2319	0.2485 ± 0.0034
	$\langle \delta c/c \rangle$	0.0009	0.0037	-
	$\langle \delta ho / ho angle$	0.011	0.040	_

Serenelli et al. 2011

The solar abundance problem

 The standard solar models with the 'old 1D LTE' solar abundances (GS 1998) agree well with helioseismology

but

the new (3D, NLTE) abundances destroy the agreement

Solar photospheric spectrum – not all elements can be measured

He

H II regions or B stars, helioseismology A(He) = 10.99

Ne, Ar

only from solar wind, flares, sunspots usually need some reference element, e.g. Ne/Mg or Ne/O

Caffau et al. 2010

- 3D hydro solar model (CO5BOLD)
- approximate treatment of NLTE

Asplund et al. 2009, ARAA

- 3D hydro solar model (Stagger)
- NLTE, where available

Element	Ion.	Abundance	Ν
	state		lines
Li	Ι	1.03 ± 0.03	1
С	I	8.50 ± 0.06	45
Ν	I	7.86 ± 0.12	12
0	Ι	8.76 ± 0.07	10
Р	I	5.46 ± 0.04	5
S	I	7.16 ± 0.05	7
K	I	5.11 ± 0.09	6
Fe	II	7.52 ± 0.06	15
		Z/X = 0.0209	

Element	GS98	AGSS09
С	8.52	8.43
Ν	7.92	7.83
0	8.83	8.69
Ne	8.08	7.93
Mg	7.58	7.53
Si	7.56	7.51
Ar	6.40	6.40
Fe	7.50	7.45
Z/X	0.0229	0.0178

Explanations?

Asplund et al. 2009

Z/X = 0.0178

Caffau et al. 2010 Z/X = 0.0209

"The differences reflects the differences in the T structure of the CO5BOLD and Stagger" (Caffau et al.)

Maria Bergemann, Max-Planck Institute Garching

OH vibration-rotation lines: extremely sensitive to 3D effects

Asplund et al. (2004)

The mean differences between the 3D hydro models are small (Beeck et al. 2012): $<\Delta$ T> \sim 0

where the line formation takes place

Beeck et al. (2012)

Maria Bergemann, Max-Planck Institute Garching

But RMS temperature fluctuations are larger at a given depth in Stagger models

horizontal T and rho in homogeneities contribute strictly positively to the number density of molecules

O I atomic lines – severe negative NLTE effects

line (Caffau	et al.	2008	= 1)	NLTE ($(S_{\rm H} = 1/3)$		NLTE (S _H	(0 = 1)	Flux/Intensity
nn.				corr. HH ^a	<i>A</i> (O)	corr.	<i>A</i> (O)	corr.	corr. A04 ^b	
615.8	8.64	8.64	-0.003		8.64	-0.004	8.64	-0.002	-0.03	F
615.8	8.63	8.62	-0.003	-0.01	8.62	-0.003	8.62	-0.002		I
630.0	8.68	8.68	0.0		8.68	0.0	8.68	0.0		
636.3	8.78	8.78	0.0		8.78	0.0	8.78	0.0		
777.1	9.03	8.87	-0.16		8.81	-0.22	8.75	-0.28	-0.27	F
777.1	8.93	8.85	-0.07	-0.07	8.81	-0.12	8.77	-0.16		Ι
777.4	8.99	8.84	-0.14		8.79	-0.20	8.74	-0.25	-0.24	F
777.4	8.88	8.80	-0.08	-0.06	8.76	-0.12	8.72	-0.16		Ι
777.5	8.96	8.85	-0.12		8.80	-0.16	8.75	-0.21	-0.20	F
777.5	8.88	8.82	0.06	-0.05	8.79	-0.09	8.75	0.12		I

O I atomic lines – severe negative NLTE effects

The forbidden [O I] line is blended by a Ni I line

Solutions

Missing opacity? (Christensen-Dalsgaard et al. 2009)

Underestimated element diffusion?

Accretion of low-Z material? (Serenelli et al. 2011)

Underestimated solar Ne abundance? - unclear

Erroneous solar abundances? - unclear

Combination of some of the above?