NLTE analysis of spectra: FG stars

Maria Bergemann Max-Planck Institute for Astrophysics

FG stars

Fig. 5. Evolutionary tracks (same composition as Fig. 4) for low-mass models up to the RGB-tip.

NLTE in FG stellar atmospheres

The key questions to address

- What **atoms/molecules** are sensitive to NLTE conditions?
- Are these species important for the atmospheric structure (i.e. opacity, donors of electrons)?

NLTE and atmospheric structure

NLTE and line formation

NLTE is crucial for modelling spectral lines with the goal to determine abundances:

- Li, C, N, O (Asplund et al. 05)
- K, Na, Mg, Al, Si (Gehren et al. o6)
- Mn, Fe, Co, Ni (Korn et al. 03, Bruls et al. 93, Bergemann 08, Bergemann et al. 2011, Bergemann et al. 2012)

Sr, Ba, Eu, Sr, Pr (Bergemann et al. 2012, Mashonkina et al. 08)

Iron - a key element in astrophysics

- o a proxy of stellar metallicity [Fe/H]
- o used to derive effective temperature and surface gravity

the method of **excitation-ionization balance** (S. Sousa's talk)

• Fe I and Fe II have, by far, the largest number of lines in a spectrum of a typical F-type star, thus enabling rigorous tests of the models

 ${}^{7}S {}^{7}P^{0} {}^{7}D^{0} {}^{7}F^{0} {}^{7}G^{0} {}^{7}H^{0} {}^{7}I^{0} {}^{7}K^{0} {}^{7}L^{0} {}^{7}M^{0} {}^{5}S^{0} {}^{5}P^{0} {}^{5}D^{0} {}^{5}F^{0} {}^{5}G^{0} {}^{5}H^{0} {}^{5}I^{0} {}^{5}K^{0} {}^{5}L^{0} {}^{5}M^{0} {}^{3}P {}^{3}D {}^{3}F {}^{3}G {}^{3}H {}^{3}I {}^{3}K {}^{3}L {}^{3}M {}^{1}S^{0} {}^{1}P^{0} {}^{1}D^{0} {}^{1}F^{0} {}^{1}G^{0} {}^{1}H^{0} {}^{1}I^{0} {}^{0}K^{0} {}^{7}P {}^{7}D {}^{7}F {}^{7}G {}^{7}H {}^{7}I {}^{7}K {}^{7}L {}^{7}M {}^{5}S {}^{5}P {}^{5}D {}^{5}F {}^{5}G {}^{5}H {}^{5}I {}^{5}K {}^{5}L {}^{5}M {}^{3}S^{0} {}^{3}P^{0} {}^{3}D^{0} {}^{3}F^{0} {}^{3}G^{0} {}^{3}H^{0} {}^{3}I^{0} {}^{3}K^{0} {}^{3}L^{0} {}^{1}S {}^{1}P {}^{1}D {}^{1}F {}^{1}G {}^{1}H {}^{1}I {}^{0}K {}^{1}H {}^{1}I {}^{0}K {}^{1}H {}^{1}I {}^{0}K {}^{1}H {}^{1}I {}^{0}H {}^{1}H {}^$

NLTE: excitation balance of Fe

Level departure coefficients

Fe I is very sensitive to NLTE effects in FGK atmospheres:

 $b_i = N^{NLTE} / N_{ITE}$

- overionization due to strong non-local UV radiation field
- IR over-recombination

NLTE: excitation balance of Fe

Excitation balance of Fe I is not given by the Saha-Boltzmann statistics \rightarrow wrong T_{eff} in LTE

NLTE: ionization balance of Fe

LTE overestimates ionization fraction of Fe I/ Fe II → major impact on [Fe/H] and log g

- [Fe/H], determined
 either from Fe I or Fe II
- log g, since [Fe II/Fe I] indicator of surface gravity

NLTE: abundances

$\Delta = \log A (\text{non-LTE}) - \log A (\text{LTE})$

NLTE abundance correction Δ

$\Delta = \log A (\text{non-LTE}) - \log A (\text{LTE})$

Metallicity = Fe abundance

Procyon: visual binary, astrometric mass + interferometric ang. diameter

- super-solar metallicity (if LTE & Fe II) [Fe/H] = + 0.08 ... + 0.12
- sub-solar metallicity (if LTE & Fe I) [Fe/H] = -0.12 ... 0.03

Metallicity = Fe abundance

Procyon: visual binary, astrometric mass + interferometric ang. diameter Metallicity from Fe I and Fe II lines: [Fe/H] = -0.03

Stellar parameters

Stellar parameters

Abundances of trace elements

$\Delta = \log A (\text{non-LTE}) - \log A (\text{LTE})$

NLTE abundance corrections are a function of T_{eff} , log g, and [Z], but also depend on the atomic properties:

- Ti I: − 0.05 < ∆ < + 0.3
- Mn I : − 0.1 < ∆ < + 0.5
- Co I: −0.1 < ∆ < +0.7

Maria Bergemann, Max-Planck Institute Garching^{83.3} 4783.4 4783.5 4783.6

Applications: Galactic Archaeology

Chemical evolution of Mn: [Mn/Fe] with [Fe/H]

NLTE online database

http://www.inspect-stars.net/

Welcome to the INSPECT project

Home Documentation FAQ

FAQ

Philosophy

- Release Notes
- Contact Us

Team

pmwiki.org

edit SideBar

A database for Interactive NLTE Spectroscopy of late-type stars.

Get started by choosing your element from the periodic table.

1 H																	2 He
<u>3</u> Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
<u>11</u> Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19	20	21	<u>22</u>	23	24	25	<u>26</u>	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	<u>Ti</u>	V	Cr	Mn	<u>Fe</u>	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	<u>38</u>	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	<u>Sr</u>	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Uuq	Uup	Uuh	Uus	Uuo

Introduction

The idea

Model atmosphere

Model atmosphere

' TEFF 4300. GRAVITY 1.50000 LTE 'TITLE [0.0] VTURB=1.0 KM/SEC L/H=1.50 MARCS-0S ASPLUND ABUNDANCES ' OPACITY IFOP 0' 0 0.00 ' CONVECTION ON TURBULENCE 0FF 0.00 0.00 0.00' 1.50 'ABUNDANCE SCALE 1.00000 ABUNDANCE CHANGE 1 0.92080 2 0.07837' ABUNDANCE CHANGE 3 -10.99 4 -10.66 5 -9.34 6 -3.65 7 -4.26 8 -3.38' ABUNDANCE CHANGE -7.48 10 -4.20 -5.67 14 9 11 -5.87 12 -4.51 13 -4.53' ABUNDANCE CHANGE 15 -6.68 16 -4.90 17 -6.54 18 -5.86 19 -6.96 20 -5.73' ABUNDANCE CHANGE 21 -8.99 22 -7.14 23 -8.04 24 -6.40 25 -6.65 26 -4.59' ABUNDANCE CHANGE 27 -7.12 28 -5.81 29 -7.83 30 -7.44 31 -9.16 32 -8.46' ABUNDANCE CHANGE 33 -9.75 34 -8.71 35 -9.48 36 -8.76 37 -9.12' -9.44 38 -10.20' ABUNDANCE CHANGE 39 -9.83 40 -9.45 41 -10.62 42 -10.12 43 -20.00 44 ABUNDANCE CHANGE 45 -10.92 46 -10.35 47 -11.10 48 -10.27 49 -10.44 50 -10.04' ABUNDANCE CHANGE 51 -11.04 52 -9.85 53 -10.53 54 -9.77 55 -10.97 56 -9.87' ABUNDANCE CHANGE 57 -10.91 58 -10.46 59 -11.33 60 -10.59 61 -20.00-11.03' 62 ABUNDANCE CHANGE 63 -11.52 64 -10.92 65 -11.76 66 -11.53 -10.90 67 68 -11.11' -12.04 70 -10.96 71 -11.98 72 -11.16 73 -10.93' ABUNDANCE CHANGE 69 -12.21 74 ABUNDANCE CHANGE 75 -11.81 76 -10.59 77 -10.66 78 -10.40 79 -11.03 80 -10.91' ABUNDANCE CHANGE -11 14 82 -10 04 83 -11 30 84 -20 00 85 81 -20.00 86 -20.00' A – abundance of an element, A = $\log N/N_{H}$ + 12 20.00 92 ABUNDANC -12.51' ABUNDANC 20.00 98 -20.00' ABUNDANC N - total number density of an element 'READ DECK6 ', dep, ' RHOX, T, P, XNE, ABROSS, ACCRAD, VTURB, FLXCNV, VCONV, VELSND'

Model atmosphere

Gas pressure P(t) Column mass density m(t) Temperature T(t) Electron concentration $N_{a}(t)$ READ DECK6 72 RHOX, T, P, XNE, ABROSS, ACCRAD, VTURB, FLXCNV, VCONV, VEL 1.11438611E-03 4303.3 1.114E+01 1.188E+09 1.197E-04 5.762E-03 1.46933430E-03 1.469E+01 1.499E+091.309E-044325.0 5.781E-03 1.90642161E-03 4338.1 1.906E+01 1.806E+09 1.404E-045.788E-03 2.44338350E-03 4355.4 2.443E+01 2.200E+09 1.541E-045.798E-03 3.09334096E-03 4372.8 3.093E+01 2.664E+09 1.704E-04 5.816E-03 3.87393779E-03 4391.0 3.874E+01 3.217E+09 1.900E-045.851E-03 4.80510076E-03 3.867E+09 2.128E-04 4.805E+014409.4 5.891E-03 5.91112062E-03 4.629E+09 2.393E-04 4428.0 5.911E+015.939E-03 7.22091430E-03 4446.5 7.221E+01 5.515E+09 2.698E-04 5.995E-03 8.76903374E-03 4464.8 8.769E+01 6.544E+09 3.046E-04 6.061E-03 1.05970558E-02 1.060E+02 7.729E+09 3.440E-04 4482.7 6.141E-03 9.088E+09 1.27556538E-02 4500.1 .276E+02 3.885E-04 6.240E-03 1.53040028E-02 4517.4 1.530E+02 1.066E+10 4.389E-04 6.356E-03 4534.4 1.831E+02 1.246E+10 4.961E-04 6.489E-03 1.83113451E-02

LTE line formation

• the profile function

$$\psi(\nu - \nu_0) = \phi(\nu - \nu_0) = \frac{H(a, \upsilon)}{\sqrt{\pi}\Delta\nu_D} \quad \text{with} \quad a = \frac{\gamma_R + \gamma_3 + \gamma_4 + \gamma_6}{4\pi\Delta\nu_D} \quad \upsilon = \frac{\nu - \nu_0}{\Delta\nu_D}$$

• line absorption coefficient

$$\kappa_{\lambda}^{l} = rac{\pi e^{2}}{m_{\mathrm{e}}c} rac{\lambda}{c} b_{i} rac{N_{i}^{\mathrm{LTE}}}{N_{\mathrm{El}}} N_{\mathrm{H}} \log \varepsilon f_{ij} rac{H(a,v)}{\Delta \lambda_{D}} \left(1 - rac{b_{j}}{b_{i}} \mathrm{e}^{-hc/\lambda kT}
ight) \qquad \kappa_{\lambda} = \kappa_{\lambda}^{l} + \kappa_{\lambda}^{c},$$

$$S_{\nu} \equiv \frac{2hc^2}{\lambda^5} \frac{1}{e^{hc/kT\lambda} - 1} = B_{\nu}$$
 Line source function, assumed to be Planck function

$$I_{\lambda}(\tau_{\nu}=0,\mu) = \int_{0}^{\infty} S_{\lambda}(\tau_{\lambda}) e^{-\tau_{\lambda}/\mu} d\tau_{\lambda}/\mu \qquad \text{Emergent intensity}$$

$$F_{\lambda}(0) = 2\pi \int_{0}^{\infty} S_{\lambda}(T(\tau_{\lambda})) E_{2}(\tau_{\lambda}) d\tau_{\lambda}$$

Surface flux

NLTE line formation

$$b_i(\tau_0) = rac{n_i(\tau_0)}{n_i^*(\tau_0)} \; ,$$

$$\kappa_{\nu}^{l} = b_{l} \kappa^{*l} \frac{1 - \frac{b_{u}}{b_{l}} \mathrm{e}^{h\nu/kT}}{1 - \mathrm{e}^{h\nu/kT}} \ . \label{eq:kappa_linear_eq}$$

$$S_\lambda = rac{2h
u_0^3}{c^2} rac{1}{rac{b_l}{b_u} \mathrm{e}^{h
u_0/kT} - 1} \;.$$

LINEFORMATION
START
CANCEL
Atmos. : t <teff><logg><logz>.dat OR grid interpolation</logz></logg></teff>
Teff : 5777 K
log(g) : 4.44 [cm/s^2]
[Fe/H] : 0.00
Xi : 0.90 km/s
CONSTANT MICROTURBULENCE
XI-file : hm-micro.xi
LTE - LINEFORMATION
Departures:
Termdesio.t
Wmin : 4834.500 A
Umax : 4885.500 A
Stepwidth-crit.: 0.100000
Min.stepwidth : 5. mA / 5000 A
Max.stepwidth : 1.50 A / 5000 A
FLUX
Cos(theta) : 1.00000
NORMALIZED
ALL EXISTING LINES
ATOMIC AND MOLECULAR LINES
IGNORE QUADRATIC STARK EFFECT
SEARCH EXACT ATMOSPHERE ON
INTEGRATION: GAUSS-QUADRATURE

- define a model atmosphere or provide T_{eff} logg [Fe/H] Xi: microturbulence
- Min wavelength
- Max wavelength
- Flux or Intensity? $\cos\theta = ?$
- Linelist?

OTO									CONDAD	1.00/05)						
DEL	N TT	LHUBDH	1004 Z04	E-LOW LHBU	J LHBL JU JL		A)				GETKEE	LUG(LB)	LOTKER			LUG(L4)
DEL	Mn II				10,1815	5 56(5.0 5. FD 70/ 0.0	() (0, 0)			-2,412						
	Ur					50 3P(2.0	2,0)									
	Mgł	ні		24,1		B, V X, V(0, C	0.0)			-5,851	KUC					
	Mgł	HI		24,1		_B,v X,v(0,0	0.0)	0,20	9.40E+07	-3,914	KUC					
	Cł	HI	4861 828	.12, .		-B,v X,v(0.0	1.0)	10,20	9,40E+07	-3,809	ALC .					
	Cr		4861 845		- 530	55 - 56(🛜		C CATA		C Y 에 🗗 356						
	>Fe 1	I	4861,000		4,638	i5D 5P(2.0	1.0)		2,885+78	-2,053		-30,358				
DEL	SiH I		4861,964 2	28,1	0,51A,	√X,v(0,0 -0,	0)					-32,922				
	Cł	ΗI		12,1		A, V X, V(0, 0	0,0)					32,608				
	Cł	ΗI		12,1		A, V X, V(0,0	0,0)					-32, 10				
	MgH	ΗI		24,1		B,v X,v(0,0	0,0)					-32,881	STD			
	MgH	ΗI		24,1		B,v X,v(0,0	0.0)					-32,881	STD			
	Cł	ΗI		12,1		B,v X,v(0,0	0.0)						1			
DEL	SiH I		4862.043 2	28,1	0,51A,	√X,v(0.0 0.	0)						STD			
	Mn					4P 4P(2.5	i 1.5)						KUC	0.000		
	Co					2D 2F(1,5	2,5)							0,000		
DEL	Ni II					26(4.5 4.	5)							9,000		
DEL						4F(2.5 1.5								0		
	Cł	ΗI		12,1		A, V X, V(0,0	0.0)							-5,130	0,000	
	Cł	ΗI		12,1		A, V X, V(0,0	0.0)							-3,012	0,000	
CUR									PLOT	DEL	UNDEL	EDIT	SELECT	UNSELECT	T LINF)R

STAT ION LAMBDA	MPT E-LOW LABU LAB	L JU JL	DW	GAMRAD
DEL Mn II		10,18136 56(5,0 5,0)		
Cr I		3,375 5D 3P(2,0 2,0)		1,95E+08
MgH I	4861,779 24,1	0,206 B,v X,v(0,0 0,0)		9,40E+07
MgH I	4861,779 24,1	0,206 B,v X,v(0,0 0,0)		9,40E+07
CH I	4861,828 12,1	1,090 B,v X,v(0,0 0,0)		9,40E+07
Cr I	4861,845 31	2,530 5F 5G(3,0 4,0)		3,61E+08
>Fe I		4,638 i5D 5P(2,0 1,0)		2,88E+08
DEL SiH I	4861,964 28,1	0,51A,v X,v(0,0 0,0)		9,40E+07
CH I	4861,969 12,1	0,558 A,v X,v(0,0 0,0)		9,40E+07
CH I	4862,002 12,1	0,558 A,v X,v(0,0 0,0)		9,40E+07
MgH I	4862,018 24,1	0,868 B,v X,v(0,0 0,0)		9,40E+07
MgH I	4862,018 24,1	0,868 B,v X,v(0,0 0,0)		9,40E+07
CH I	4862,025 12,1	1,090 B,v X,v(0,0 0,0)		9,40E+07
DEL SiH I	4862,043 28,1	0,51A,v X,v(0,0 0,0)		9,40E+07
Mn I	4862,050 43	3,840 4P 4P(2,5 1,5)		8,89E+06
Co I		4,064 2D 2F(1,5 2,5)		
DEL Ni II		12,475 2G(4,5 4,5)		8,65E+08
DEL VI		2,803H 4F(2,5 1,5)		1,82E+08
CH I	4862,178 12,1	0.558 A,v X,v(0.0 0.0)		9,40E+07
CH I	4862,212 12,1	0,558 A,v X,v(0,0 0,0)		9,40E+07
CURSOR: (4861.934,	0,18) LINE-POS.: 4861,95	1 54.62%		PLOT D

