Mechanisms of departures from LTE

Maria Bergemann Max-Planck Institute for Astrophysics 'Mechanisms of departures from LTE'

processes which trigger deviations of atomic level populations from the LTE values

What is NLTE? \rightarrow what is LTE

Assumption: level populations are what they will be given the local values T, N_e , A

We neglect transitions in the atom caused by radiation

LTE: line formation is coupled to the local temperature and density

NLTE: statistical equilibrium

$$n_{i} \sum (C_{ij} + R_{ij}) = \sum n_{j} (C_{ji} + R_{ji}), i = 1, ..., NL$$

Rates out = Rates in

C_{ij}, R_{ij} – transition rates [1/second/particle]

Statistical equilibrium the number of atoms in

each excitation level i and each ionization stage j

Photosphere: a transition from LTE to extreme NLTE

Extreme NLTE

LTE: Saha-Boltzmann equations for calculation of atomic number densities caused by the radiation field that departs from the isotropic blackbody radiation field $(J_v /= B_v)$ characteristic of the local T_e

Strong interdependence between the properties of material (κ_v , σ_v) and the radiation field (I_v) !

$$N_{i} \sum (C_{ij} + R_{ij}) = \sum N_{j} (C_{ji} + R_{ji})$$
 $i = 1, ..., NL$

(1)

$$\text{ (Rates) of transitions [1/sec/particle]:} \qquad \text{ LTE if } J_v = B_v(T) \\ \text{ (b-b)} \\ \text{ (b-b)} \\ \text{ (c = 4\pi \int k_v J_v dv /hv (b-f)} \\ \mu dI_v / dz = -\alpha_v I_v + \varepsilon_v \\ \text{ (2)} \\ \alpha_{v}, \varepsilon_v = F(N_i) \\ \end{tabular}$$

Equations (1) and (2) must be solved simultaneously!

LTE if
$$J_v = B_v(T)$$

or C _{ij} » R _{ij}

Are these conditions satisfied in FG stars?

$J_v = B_v(T)$ at 500 nm

R. Rutten (lecture notes)

But, $J_v \neq B_v(T)$ at other frequencies even in LTE

The rates for the Fe I atom in a model of a solar atmosphere

C _{ii} (coll rates) /= R _{ii} (radiative rates)

Bergemann (2008)

The rates for the Fe I atom in a model of a solar atmosphere

LTE if
$$J_v = B_v(T)$$

or C _{ij} » R _{ij}

The conditions are not satisfied in FG stars

$$\sum_{n>m} N_n \left(A_{nm} + B_{nm} J_v + C_{nm} \right) + \sum_{k < m} N_k \left(B_{km} J_v + C_{km} \right) + N_e \left(R_m + Q_m \right)$$
$$- N_m \left\{ \sum_{k < m} \left(A_{mk} + B_{mk} J_v + C_{mk} \right) + \sum_{n > m} \left(B_{mn} J_v + C_{mn} \right) + \left(P_m + S_m \right) \right\} = 0$$

 $P_m = 4\pi \int \frac{a_v J_v}{hv} dv$

Radiative (photo-) ionization *P* Radiative recombination *R*

Collisional ionization *S* Collisional recombination *Q*

Radiative emission A_{nm} Stimulated emission B_{nm}

NLTE mechanisms

- 1. over-ionization
- 2. photon pumping
- 3. IR over-recombination
- 4. photon suction
- 5. photon loss in resonance lines

not unique physical processes, but **mechanisms that describe how statistical equilibrium is achieved**

Overionization

R: [transitions/sec/particle]

 $R_{ik} \sim \int \frac{\sigma_v J_v}{hv} dv$ $R_{ki} \sim B_\lambda(T_e)$

radiative ionization

radiative recombination

 v_{ik} – frequency of a level ionization edge

 σ_{ik} – ionization cross-section (from lab. experiments and/or theoretical quantum-mechanical calculations)

Overionization

R: [transitions/sec/particle]

 $R_{ik} \sim \int \frac{\sigma_v J_v}{hv} dv \quad \text{radiative ionization}$ $R_{ki} \sim B_\lambda(T_e) \quad \text{radiative recombined}$

 J_v drops less steeply than $B_v(T)$ in the UV

$$J_v >> B_v(T)$$
 \implies $R_{ik} >> R_{ki}$
Rate out > Rate in

Overionization

Atoms with large *bound-free* absorption edges (an atomic property)

Level	l ₀ [nm]	a_0	[MBarn]		
<i>n</i> = 2	364.7	15.84				
3s ¹ S	162.1	1.18			Mal All Sil	
3p ³ P ^o	251.4	20.00				
3p ¹ P ^o	375.7	11.95			Fel, Crl, III	
3p ² P ^o	207.1	65.00			Mn I, Co I, Ni I	
3p ³ P	152.1	39.16				
3d ¹ D ^o	168.2	34.49				
4s ¹ S ^o	198.6	33.56				
a ⁵ D	156.9	4.06				
70	220.1	10.0		4		· · · · · · · · · · · · · · · · · · ·
Z'P	320.1	13.3		3	$\mathbf{z}'\mathbf{P}^{\circ}$	
	number of <i>b</i>	f		2 [4Mb] 1		
	Level n = 2 $3s {}^{1}S$ $3p {}^{3}P^{\circ}$ $3p {}^{1}P^{\circ}$ $3p {}^{2}P^{\circ}$ $3p {}^{3}P$ $3d {}^{1}D^{\circ}$ $4s {}^{1}S^{\circ}$ $a^{5}D$ $z^{7}P$	Level l_0 [nm] $n = 2$ 364.73s ${}^{1}S$ 162.13p ${}^{3}P^{0}$ 251.43p ${}^{1}P^{0}$ 375.73p ${}^{2}P^{0}$ 207.13p ${}^{3}P$ 152.13d ${}^{1}D^{0}$ 168.24s ${}^{1}S^{0}$ 198.6 $a^{5}D$ 156.9 $z^{7}P$ 320.1	Level l_0 [nm] a_0 $n = 2$ 364.715.84 $3s {}^{1}S$ 162.11.18 $3p {}^{3}P^{o}$ 251.420.00 $3p {}^{1}P^{o}$ 375.711.95 $3p {}^{2}P^{o}$ 207.165.00 $3p {}^{3}P$ 152.139.16 $3d {}^{1}D^{o}$ 168.234.49 $4s {}^{1}S^{o}$ 198.633.56 $a^{5}D$ 156.94.06 $z^{7}P$ 320.113.3	Level l_0 [nm] a_0 [MBarn $n = 2$ 364.715.84 $3s {}^{1}S$ 162.11.18 $3p {}^{3}P^{0}$ 251.420.00 $3p {}^{1}P^{0}$ 375.711.95 $3p {}^{2}P^{0}$ 207.165.00 $3p {}^{3}P$ 152.139.16 $3d {}^{1}D^{0}$ 168.234.49 $4s {}^{1}S^{0}$ 198.633.56 $a^{5}D$ 156.94.06 $z^{7}P$ 320.113.3	Level l_0 [nm] a_0 [MBarn] $n = 2$ 364.715.84 $3s {}^{1}S$ 162.11.18 $3p {}^{3}P^{\circ}$ 251.420.00 $3p {}^{1}P^{\circ}$ 375.711.95 $3p {}^{2}P^{\circ}$ 207.165.00 $3p {}^{3}P$ 152.139.16 $3d {}^{1}D^{\circ}$ 168.234.49 $4s {}^{1}S^{\circ}$ 198.633.56 $a^{5}D$ 156.94.06 $z^{7}P$ 320.113.3	Level l_0 [nm] a_0 [MBarn] $n = 2$ 364.715.84 $3s {}^{1}S$ 162.11.18 $3p {}^{3}P^{\circ}$ 251.420.00 $3p {}^{1}P^{\circ}$ 375.711.95 $3p {}^{2}P^{\circ}$ 207.165.00 $3p {}^{3}P$ 152.139.16 $3d {}^{1}D^{\circ}$ 168.234.49 $4s {}^{1}S^{\circ}$ 198.633.56 $a^{5}D$ 156.94.06 $z^{7}P$ 320.113.3 a^{4} $z^{2}P^{\circ}$ $a = a arge number of bf$ $a = a arge number of bf$

Fe I has a large number of *bf* absorption edges between 200 and 300 nm

Photon pumping

A transition is 'pumped' if:

- opacity is large in the line core
 (τ_{vo} > 1)
- line wings are transparent ($\tau_v < 1$)

The same as radiative ionization but at the frequencies of line transitions

Photon suction

$$R_{ik} \sim \int \frac{\sigma_{v} J_{v}}{hv} dv$$

radiative ionization

 $R_{ki} \sim B_{\lambda}(T_e)$

radiative recombination

 J_v drops below $B_v(T)$ in the (Infra)-red when radiative equilibrium holds

Recombination in the bound-free edges of high-excitation levels (inverse of over-ionization)

 $J_v < B_v(T)$

Photon loss

opacity is small in the line core (τ_{vo} < 1), too less photo-excitations

→ photons 'escape'

Resonance line scattering and photon loss

Due to frequency redistribution in the line profile, a photon can escape in the wings from far below the location, where $\tau_{y_0} \leq 1$.

Deviations from LTE

in most cases, all these NLTE effects are present

The type and magnitude of a **dominant** NLTE effect depend on:

- *physical conditions* (T, log g, [Fe/H]) in the atmosphere
- atomic structure

Deviations from LTE

Atomic structure

- ionization energy, which gives relative abundances [Fe I/ Fe II] depending on the T/log g
- characteristics of energy levels in the atom
- number of transitions (allowed, forbidden)
- magnitude of cross-sections for particle interactions

(f-values, photoionization, H I and e impact excitation and ionization, dielectronic recombination, charge transfer)

Light elements

Heavy elements

13 000 b-b transitions

Bergemann et al. (2012)

Group 1 IA	Atomic Properties of the Elements											18 VIIIA					
1 ² S _{1/2} H Hydrogen			Frequently used fundamental physical constants For the most accurate values of these and other constants, visit physics nist.gow/constants 1 second = 9 192 631 770 periods of radiation corresponding to the transition					'n			Physics Standard Laboratory physics.nist.gov www.nist.gov/srd				ata	² ¹ S ₀ Helium	
1.00794 1s 13.5984	2 IIA		speed of light Planck const	t in vacuum ant	c h	299 792 4 6.6261 x	458 m s ⁻¹ 10 ⁻³⁴ J s	(exact) (ħ = ħ/2π)		Solids Liquids		13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	4.002602 18 ² 24.5874
2 Lithium 6.941 18 ² 28	4 'S ₀ Be Beryllum 9.012182 18 ² 28 ²		elementary cl electron mass proton mass fine-structure Rydberg con	s constant stant	e m _e c ² m _p α R _∞	1.6022 x 9.1094 x 0.5110 M 1.6726 x 1/137.036 10 973 73	10 ⁻²⁷ kg NeV 10 ⁻²⁷ kg 32 m ⁻¹			Gases Artificia Prepare	lly d	5 °P _{1/2} B Boron 10.811 1s ² 2s ² 2p	6 °P ₀ Carbon 12.0107 1s ² 2s ² 2p ²	7 *S [*] _{3/2} N Nitrogen 14.0067 15 ² 25 ² 2p ³	8 °P ₂ Oxygen 15.9994 1s ² 2s ² 2p ⁴	9 ² P ⁹ _{3/2} F Fluorine 18.9984032 1s ² 2s ² 2p ⁵	10 'S _D Neon 20.1797 1s ² 2s ² 2p ⁵
11 ² S _{1/2} Na Sodium 22.98976928 [Ne]3s	12 ¹ S ₀ Mg Magnesium 24.3050 [Ne]3s ²	3 IIIB	Boltzmann co 4 IVB	5 VB	R _w c R _w hc k	3.289 842 13.6057 1.3807 x 7 VIIB	2 x 10 ¹⁵ Hz eV 10 ⁻²³ J K ⁻¹ 8	9 VIII	10	11 IB	12 IIB	13 ² P [*] ₁₂ Al Auminum 26.9815386 [Ne[3s ² 3p	14 ³ P ₀ Si Silicon 28.0855 [Ne]3s ² 3p ²	15 45°32 Phosphorus 30.973762 [Ne]3s ² 3p ³	16 ³ P ₂ Sulfur 32.065 [Ne]3s ² 3p ⁴	17,4228 17 ² P ^o ₃₂ Chlorine 35,453 [Ne]3s ² 3p ³ 200729	18 'S ₀ Argon 39.948 [Ne]35 ² 3p ⁶
19 S _{1/2} Potassium 39.0983 JAr/4s	20 ¹ S _b Ca Calcium 40,078 [Ar]4s ²	21 ² D ₃₂ Sc Scandium 44.955912 [Ar[3d4s ²]	22 ³ F ₂ Ti Titanium 47.867 [Ar]3d ² 4s ²	23 4F312 Vanadium 50.9415 [Ar]3d ³ 4s ²	24 ⁷ S ₃ Cr Chromium 51.9961 [Ar]3d ⁵ 4s	25 ⁶ S ₅ , Mn Manganese 54.938045 [Ar[3d ³ 4s ²]	26 ⁵ D ₄ Fe Iron 55.845 [Ar]3d ⁴ 4s ²	27 ⁴ F _{9/2} Cobalt 58.933195 [Ar]3d ⁷ 4s ²	28 ³ F ₄ Nickel 58.6934 [Ar]3d ⁸ 4s ²	29 ² S _{1/2} Cu Copper 63.546 [Ar]3d ¹¹ 4s	30 'S ₀ Zn ^{2inc} ^{65.38} [Ar]3d ¹⁹ 4s ²	31 P12 Galium 69.723 [At]3d ¹⁰ 4s ² 4p	32 ³ P ₀ Germanium 72.64 [Ar]3d ¹⁰ 4s ² 4p ²	33 ⁴ S _{3/2} As Arsenic 74.92160 [Ar]3d ¹⁰ 4s ² 4p ³	34 ³ P ₂ Selenium 78.96 [Ar]3d ¹⁰ 4s ² 4p ⁴	35 ² P _{3/2} Br Bromine 79.904 [Ar[3d ³⁰ 4s ² 4p ⁵]	36 ¹ S ₀ Krypton 83.798 [Ar]3d ¹⁰ 4s ² 4p ⁶
37 ² S _{1/2} Rb Rubidium	38 'S ₀ Sr Strontum	39 ² D ₃₂ Yttrium	40 ³ F ₂ Zirconium	41 ⁶ D ₁₂ Niobium	42 ⁷ S ₃ Mo Molybdenum	43 SS	7.9024 Ru Ruthenium	45 ⁴ F ₉₂ Rh Rhodium	46 ¹ S ₀ Pd Paladium	47 ² S _{1/2} Ag Silver	48 'S ₀ Cd Cadmium	49 ² P ^o ₁₂ In Indum	50 ³ P ₀ Sn Tin	51 ⁴ S ^o _{3/2} Sb Antimony	9.7524 52 ³ P ₂ Telurium	53 ² P ₃₂ I lodine	54 ¹ S ₀ Xe Xenon
85.4678 [Kr]5s 4.1771	87.62 [Kr]5s ¹ 5.6949	88.90685 [Kr]4d5s ² 6.2173	91.224 [Kr]4d ² 5s ² 6.6339	92.90638 [Kr]4d ⁴ 5s 6.7589	95.96 [Kr]4d ⁵ 5s 7.0924	(98) [Kr]4d ⁵ 58 ² 7.28	101.07 [Kr]4d ⁷ 5s 7.3605	102.90550 [Kr]4d ⁸ 5s 7.4589	106.42 [Kr]4d ¹⁰ 8.3369	107.8682 [Kr]4d ¹¹ 5s 7.5762	112.411 [Kr]4d ¹⁸ 5s ² 8.9938	114.818 [Kr]4d ¹⁰ 58 ² 5p 5.7864	118.710 [Kr]4d ¹⁰ 5s ² 5p ² 7.3439	121.760 [Kr]4d ¹⁰ 5s ² 5p ³ 8.6084	127.60 [Kr]4d ¹⁰ 5s ² 5p ⁴ 9.0096	126.90447 [Kr]4d ¹⁰ 5s ² 5p ⁵ 10.4513	131.293 [Kr]4d ¹⁰ 5s ² 5p ⁶ 12.1298
55 ² S ₁₀₂ Cesium 132.9054519 [Xa)8a 3.8939	56 ¹ S ₀ Ba Barium 137.327 [Xa]65 ² 5.2117		72 ³ F ₂ Hf Hafnium 178.49 [Xe]41 ⁴⁶ 5d ² 6s ² 6.8251	73 ⁴ F _{3/2} Tantalum 180.94788 [Xe]4f ¹⁴ 5d ³ 6s ² 7.5496	74 ⁶ D ₀ W Tungsten 183.84 [Xe]4t ¹⁴ 5d ⁴ 6s ² 7.8640	75 ⁶ S _{5/2} Re Rhenium 186.207 [Xe]4t ¹⁴ 5d ⁴ 5s ² 7.8335	76 ⁵ D ₄ Osmium 190.23 [Xe]4t ¹⁴ 5d ⁶ 6s ² 8.4382	77 ⁴ F ₉₂ Ir 192,217 [X0]41 ¹⁴ 5d ⁷ 6s ² 8.9670	78 ³ D ₃ Platinum 195.084 [Xe]41 ¹⁴ 5d ⁸ Es 8.9588	79 ² S ₁₂ Au Gold 196.966569 [Xe]4f ¹⁴ 5d ¹⁰ 6s 9.2255	80 ¹ S ₀ Hg Mercury 200.59 [Xe]4t ¹⁴ 5d ¹⁰ 6s ² 10.4375	81 ² P [*] _{1/2} TI Thallium 204.3833 [Hg]6p 6.1082	82 ³ P ₀ Pb Lead 207.2 [Hg]6p ² 7,4167	83 ⁴ S ³ ₃₂ Bismuth 208.96040 [Hg] ^{6p³} 7.2855	84 ³ P ₂ Polonium (209) (Hg)5p ⁴ 8,414	85 ² P ^o ₃₂ At Astatine (210) [Hg]6p ⁵	86 'S ₀ Rn Radon (222) [Hg]6p ⁴ 10.7485
87 ² S _{1/2} Fr Francium (223) [Rn17s	88 ¹ S ₀ Ra Radium (226) [Rn17s ²		104 ³ F ₂ ? Rf Rutherfordium (265) [Rn]5f ¹⁴ 6d ² 7s ² 3	105 Db Dubnium (268)	106 Sg Seaborgium (271)	107 Bh Bohrium (272)	108 Hs Hassium (277)	109 Mt Meitnerium (276)	110 DS Darmstadtium (281)	111 Rg Roentgenium (280)	112 Cn Capernicium (285)	113 Uut Ununtrium (284)	114 Uuq Ununquadium (289)	115 Uup Ununpensium (288)	116 Uuh Ununhexium (293)	117 Uus Ununseptium (294)	118 Uuo Ununoctium (294)
[Xa)6s 3.8939 87 ² S _{1/2} Francium (223) [Rn]7s 4.0727	[Xa]6s ⁴ 5.2117 88 ¹ S _D Radium (226) [Rn]7s ² 5.2784		(Xe)4f ⁰ 6.8 104 Ruther (2) (Rn)5f ¹ 6	¹ 5d ² 6s ² 251 3 F ₂ ? 2f fordium 65) ¹ 6d ² 7s ² ? .0?	*5d*6s* [Xe]41**5d*6s* *75,27 105 *6d*7s* Dubnium 65) 00	³ 5d ² 6s ² [Xe]4t ² 5d ² 6s ² [Xe]4t ² 5d ² 6s ² ³ F ₂ ? 105 106 Dbb Dubnium (268) ⁶ d ² 7s ² ? 107 108	³ 5d ² 6e ² [Xe]4t ⁻¹ 5d ² 6e ² [Xe]4t ⁻¹ 5d ² 6e ² [Xe]4t ⁻¹ 5d ² 6e ² ³ F ₂ ? 105 106 Sg fordium Dubnium (268) Seaborgium 107 (271) Bohrium (272) 107	"5d*6s" [Xe]4t"5d*6s" [Xe]4t"5d*6s"<	"5d*6s" [Xe]4t"5d*6s" [Xe]4t"5d*6s"<	"5d*6s" [Xe]4t"5d*6s" [Xe]4t"5d*6s"<	"5d*6s" [Xe]4f"5d*6s" [Xe]4f"5d*6s"<	"5d*6s" [Xe]4t"5d*6s" [Xe]4t"5d*6s"<	"5d*6s" [Xe]4t"5d*6s" [Xe]4t"5d*6s"	"5d*6s" [Xe]4t"5d*6s" [Xe]4t"5d*6s" [Xe]4t"5d*6s" [Xe]4t"5d*6s" [Xe]4t"5d*6s" [Ke]4t"5d*6s" [He]6p [He]6p	"5d*6s" [Xe]41"5d*6s" [Xe]41"5d*6s" [Xe]41"5d*6s" [Xe]41"5d*6s" [Xe]41"5d*6s" [Xe]41"5d*6s" [Xe]41"5d*6s" [Hg]6p [Hg]6p<	"5d*6s" [Xe]4t"5d*6s" [Xe]4t"5d*6s" [Xe]4t"5d*6s" [Xe]4t"5d*6s" [Xe]4t"5d*6s" [Xe]4t"5d*6s" [Xe]4t"5d*6s" [He]6s [He]6s<	"5d*6s" [Xe]4t"5d*6s" [Xe]4t"5d*6s" [Xe]4t"5d*6s" [Xe]4t"5d*6s" [Xe]4t"5d*6s" [Ke]4t"5d*6s" [He]6p [He]6p

Examples: Fe I

Examples: Na I, Al I

• $J_v > B_v(T_{local})$ in the UV over-ionization from the low-excited levels • $J_v < B_v(T_{local})$ in the IR over-recombination to the high-excited levels

NLTE effects on line profiles

changes in the line opacity $k_n^{}\,(\sim\tau)$ and line source function S

$$I_{\nu} = \int_0^\infty S_{\nu} e^{-\tau_{\nu}} d\tau_{\nu}$$

as a result, line strengthening or weakening, or both

Change of line opacity k_n and line source function S_n determine strength and shape of a spectral line:

$$I_{\nu} = \int_0^\infty S_{\nu} e^{-\tau_{\nu}} d\tau_{\nu}$$

 $S_n \sim B_n b_j / b_i$

if $b_i < 1$, then $k_{NLTE} < k_{,LTE}$ NLTE line weaker than in LTE if $b_i > b_j$, then $S_n < B_n b_j/b_i$ NLTE line stronger than in LTE