Effective Temperature Determination

Barry Smalley

Astrophysics Group Keele University Staffordshire ST5 5BG United Kingdom

b.smalley@keele.ac.uk

Effective Temperature

$$\sigma T_{eff}^4 \equiv \int_0^\infty F_\nu d\nu = F_* = \frac{L}{4\pi R^2}$$

- It is the temperature of a black body that gives the same total power per unit area.
- Physically related to F_* total radiant power per unit area at stellar surface.
- **Directly** given by stellar luminosity and radius.

Depth Dependence

- Temperature of line forming region is lower than T_{eff}
- Spectral lines are formed at different depths and temperatures.

 $T_{eff}\ 6000,\ log\ g\ 4.5$

Paschen Continuum

- Using stellar fluxes to determine Teff
- Requires accurate moderate-resolution flux-calibrated spectra or spectrophotometry.
- Basis for T_{eff} colour calibrations
 - More in later lecture

Balmer Profiles

- The Balmer lines provide good $T_{\rm eff}$ diagnostic below around 8000K due to low sensitivity to surface gravity.
- For hotter stars sensitivity to both T_{eff} and log g.

Balmer Line Normalization

- Broad lines require careful continuum determination
 - Must preserve true profile shape
- Echelle spectra usually give poor profiles due to curved orders
- Medium-resolution single order spectra preferred

Smalley 1992 PhD Thesis

Solar H_{α}

T_{eff} 5777 log *g* 4.44

Solar H_{α}

T_{eff} 5720 log *g* 4.44

See for example Cayrel et al., 2011, A&A, 531, 83

Spectral Line depth ratios

Gray & Johanson, 1991, PASP, 103, 439

Good for looking for *T*_{eff} variations in a given star

- Line depth ratios
 - Differing excitation potentials
 - Precise to ±10K
- A measure of temperature in line forming regions
 - Model dependent

Tied to *T*_{eff} scale by empirical calibrations.

Equivalent Width

- Measure of number of absorbers
 - Abundance
- BUT
 - No information on profile shape
 - Wings can affect measurement

$$W_{\lambda} = \int (1 - F_{\lambda}/F_0) d\lambda$$

Metal Line Diagnostics

- Excitation Potential
 - Abundances from the same element should agree for all excitation potentials
- Ionization Balance
 - The abundances obtained from differing ionization stages of the same element <u>must</u> agree
 - Fe I/Fe II ratio can be used as a $T_{\rm eff}$ log g diagnostic

Exploring Excitation Potential

- Use lines that are not pressure sensitive
 - Solar-type stars, use neural metals
 - In hotter stars, use ionised metals
 - Weak lines to avoid saturation effects
- Generated a simulated set of "observed" equivalent widths (W_0/λ).
 - Model: T_{eff} 6000 K, log *g* 4.5, log A(Fe)7.50
 - Take Fe I lines taken from Kurucz gfall linelist in wavelength range 5000 – 6000 Å
 - Select those with 5 < EW < 100 mÅ

Change Temperature

Note change in mean log A(Fe) by ± 0.18 dex

Change Surface Gravity

A lack of abundance correlation

- Analysis method searches for zero correlation between log A and EP:
 - Regression fit and find where gradient is zero
 - Could use where correlation coefficient is zero
- Error estimates
 - 1-sigma error on gradient or correlation coefficient
 - 1% error in W_λ gives ~10K in T_{eff}
 - 5%, 50K; 10%, 100K
 - ±0.1dex in log g gives ±20K in T_{eff}

Equivalent width correlation

- From a "*philosophical*" viewpoint all Fe I lines in the atmosphere should have the same abundance.
- Since $\log(\frac{w}{\lambda}) \propto \log A$ we can change the procedure to using equivalent width differences.
- Let us use $\log\left(\frac{w}{\lambda}\right) \log\left(\frac{w_0}{\lambda}\right) = \log\left(\frac{w}{w_0}\right)$
- Now plot this against EP
 - Assume an abundance: $\log A(Fe) = 7.50$

Change Temperature

Change surface gravity

Change Abundance

Change Teff and log A(Fe)

28/36

"Total" Equivalent Width

• Rather than using individual equivalent width differences, now use sum of the differences:

$$\sum \log(\frac{\rm W}{\rm W_o})$$

- Rather than trend with EP, just have one number
 - Would appear to be a loss of information?

Total EW Trends

- Trend in log A(Fe) with T_{eff}
- T_{eff} virtually insensitive to log g

Using $\chi 2$ instead

- Measuring equivalent widths might not always be practical.
 - Blending, high rotation, etc.
- Now consider T_{eff} determination using χ^2 fitting to spectrum
 - Generated with *all* lines >5mÅ in range 5000-6000Å
 - Same Model: T_{eff} 6000 K, log g 4.5, log A(Fe)7.50
 - Assume S/N 100:1 for χ^2 calculation

x² Correlations

- Correlation between [M/H] and T_{eff}
- Weak sensitivity to log *g*

Conclusions on Simulation

- Using log A(Fe) versus EP provides a good determination of T_{eff} visual diagnostic diagram
 - Low sensitivity to log g
- Using EW has log A(Fe) complication
 - "Total" EW has T_{eff} correlated with log A(Fe)
- Using χ^2 gives T_{eff} might be coupled with log A(Fe), but not (significantly) with log g.

At least in this simulated example!

Global Spectral Fitting

- Take a large grid of synthetic spectra with varying $T_{\rm eff}$, log g, [M/H], etc.
- Locate the best-fitting synthesis
 - Hence obtain T_{eff} , log g, [M/H], etc.
- Issues to consider
 - How reliable are these parameters?
 - What are the hidden dangers?
 - What are realistic error estimates, over and above the internal precision?

Do we care about T_{eff} ?

- The effective temperature of a star is not important!
- It is the $T(\tau_0)$ relationship that determines the spectral characteristics.
 - The parameters obtained from spectroscopic methods alone *may not* be consistent with the true values
 - Not necessarily important for abundance analyses
 - Important when interested in fundamental properties

Summary

- Currently T_{eff} determinations are generally <u>accurate</u> to no more than 1~2% (50~100K)
- Possible to get an <u>internal precision</u> on measurements that are sensitive to temperature variations of ±10K
 - but <u>accuracy</u> on the true T_{eff} scale is significantly less.

Beware *T*_{eff} values without errorbars!